Convolutional codes with maximum distance profile

نویسندگان

  • Ryan Hutchinson
  • Joachim Rosenthal
  • Roxana Smarandache
چکیده

Maximum distance profile codes are characterized by the property that two trajectories which start at the same state and proceed to a different state will have the maximum possible distance from each other relative to any other convolutional code of the same rate and degree. In this paper we use methods from systems theory to characterize maximum distance profile codes algebraically. The main result shows that maximum distance profile codes form a generic set inside the variety which parameterizes the set of convolutional codes of a fixed rate and a fixed degree.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Existence of Strongly-MDS Convolutional Codes

It is known that maximum distance separable and maximum distance profile convolutional codes exist over large enough finite fields of any characteristic for all parameters (n, k, δ). It has been conjectured that the same is true for convolutional codes that are strongly maximum distance separable. Using methods from linear systems theory, we resolve this conjecture by showing that, over a large...

متن کامل

Constructing strongly-MDS convolutional codes with maximum distance profile

This paper revisits strongly-MDS convolutional codes with maximum distance profile (MDP). These are (non-binary) convolutional codes that have an optimum sequence of column distances and attains the generalized Singleton bound at the earliest possible time frame. These properties make these convolutional codes applicable over the erasure channel, since they are able to correct a large number of...

متن کامل

Superregular Matrices and the Construction of Convolutional Codes having a Maximum Distance Profile

Superregular matrices are a class of lower triangular Toeplitz matrices that arise in the context of constructing convolutional codes having a maximum distance profile. These matrices are characterized by the property that no submatrix has a zero determinant unless it is trivially zero due to the lower triangular structure. In this paper, we discuss how superregular matrices may be used to cons...

متن کامل

MDP Periodically Time-Varying Convolutional Codes

In this paper we use some classical ideas from linear systems theory to analyse convolutional codes. In particular, we exploit input-state-output representations of periodic linear systems to study periodically time-varying convolutional codes. In this preliminary work we focus on the column distance of these codes and derive explicit necessary and sufficient conditions for an (n, 2, 1) periodi...

متن کامل

On superregular matrices and MDP convolutional codes

Superregular matrices are a type of lower triangular Toeplitz matrix that arises in the context of constructing convolutional codes having a maximum distance profile. These matrices are characterized by the property that the only submatrices having a zero determinant are those whose determinants are trivially zero due to the lower triangular structure. In this paper, we discuss how superregular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Systems & Control Letters

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2005